麦克雷
标题:
(1+x)14=a0+a1x+a2x2…+a14x14,则(a1+2a2+3a3+…7a7)*2(-13)次=_百 ...
[打印本页]
作者:
Arthurwed
时间:
2023-4-7 11:29
标题:
(1+x)14=a0+a1x+a2x2…+a14x14,则(a1+2a2+3a3+…7a7)*2(-13)次=_百 ...
(1+x)14=a0+a1x+a2x2…+a14x14,则(a1+2a2+3a3+…7a7)*2(-13)次=_百 ...
作者:
FrodoNIN
时间:
2023-4-7 11:30
解:
由(1+x)14=a0+a1x+a2x2……+a14x14,可知,
a0=C140
a1=C141
a2=C142
……
a7=C147
故(a1+2a2+3a3+…7a7)=
C141+
2C142+3
C143
+……+
7C147
因为,Cmn
=m/n*Cm-1n-1
(m≥n,且同是自然数。)
故C141+
2C141+3
C142
+……+
7C147
=
C141+2*(羡袭睁14
/2)C130+3*(14/3)
C131
+……+
7*(兄岁14/7)C137
=14+14
C130+14
C131
+……+
14C137
=14(C130+
C131
+…禅败…+
C137)
因为,Cmn=
Cmm-n
故C141+
2C141+3
C142
+……+
7C147
=14(C130+
C131
+……+
C137)
=14/2(C130+
C131
+……+
C148
+……
C1313)
=14/2*2^13
=7*2^13
故a1+2a2+3a3+…7a7)*2(-13)次
=7*2^13
*2^(-13)
=7
答案为7
欢迎光临 麦克雷 (https://mavom.cn/)
Powered by Discuz! X3.5