CHAPTER 2 SILKEN FETTERS
A GOOD WAY TO ORDER OUR UNDERSTANDING OF ANY living creature is to imagine, fancifully and with something more than poetic licence, that it (or, if you prefer, a hypothetical 'designer' of the creature) faces a chAIn of problems or tasks. First we pose the initial problem, then we think of possible solutions that might make sense. Then we look at what the creatures actually do. That often leads us to notice a new problem facing animals of this kind, and the chain continues. I did this in the second chapter of The Blind Watchmaker, with respect to bats and their sophisticated echo-ranging techniques. Here I shall follow the same strategy in this chapter on spider webs. Notice that the progression of problem leading to problem is not to be thought of as marching through one animal's lifetime. If it is a temporal progression at all the time scale is evolutionary, but it may sometimes be not a temporal but a logical progression.
Our fundamental task is to find an efficient method of catching insects for food. One possibility is the flying swift solution. Take to the air like the prey themselves. Fly extremely fast with the mouth open, aiming accurately with keen eyes. This method works for swifts and swallows, but it absorbs costly investment in equipment for high-speed flying and manoeuvring and a high-tech guidance system. The same is true of the bat solution, which is the nocturnal equivalent using sound echoes instead of light rays for guiding the missile.
A completely different possibility is the 'sit and wait' solution. Mantises, chameleons and certain other lizards that have evolved independently and convergently to be like chameleons make a go of this solution by being highly camouflaged and by moving in an agonizingly slow and stealthy manner until the final, explosive strike with arms or tongue. The reach of the chameleon's tongue enables it to catch a fly anywhere within a radius comparable to its own body length. The reach of the mantis's grappling arms is proportionately of the same order of magnitude. You might think that this design could be improved by lengthening the radius of capture even further. But tongues and arms that were much longer than the body's own length would be prohibitively costly to build and maintain: the extra flies they'd catch wouldn't pay for them. Can we think of a cheaper way to extend the 'reach' or radius of capture?
Why not build a net? Nets have to be made of some material and it won't be free. But unlike a chameleon's tongue the net material doesn't have to move, so doesn't need bulky muscle tissue. It can be gossamer-thin and can therefore, at low cost, be spun out to cover a much larger area. If you took the meaty protein that would otherwise have been used up in muscular arms or tongue, and reprocessed it as silk, it would go a very long way, much further than the reach of a chameleon's tongue. There is no reason why the net should not occupy an area 100 times that of the body, yet still be economically made out of secretions from small glands in the body.Silk is a widespread commodity among arthropods (the major division of the animal kingdom to which both insects and spiders belong).
Stick caterpillars belay themselves to a tree with a single thread of the stuff. Weaver ants stitch leaves together using silk extruded by their larvae, held in their jaws as living shuttles (Figure 2.1). Many caterpillars swaddle themselves in a cocoon of silk before growing into a winged adult. Tent caterpillars smother their trees with gossamer. A single domestic silkworm spins nearly a mile of silk when it builds its cocoon. But although silkworms are the basis of our own silk industry, it is really spiders that are the virtuoso silk producers of the animal kingdom, and it is surprising that spider silk is not more used by humanity. It is used for making precision cross-hairs in microscopes. In his beautiful book Self-Made Man, the zoologist and artist Jonathan Kingdon speculates that spider silk may have inspired human children to invent one of our most vital pieces of technology, string. Birds, too, recognize the good qualities of spider silk as a material: 165 species (belonging to twenty-three independent families, which suggests that it has been discovered many times independently) are known to incorporate spider silk into the fabric of their nests. A typical orb-weaving spider, the garden cross spider Araneus diadematus produces six different kinds of silk from its rearend nozzles, made in separate glands in its abdomen, and it switches between the different types for different purposes. Spiders used silk long before they evolved the ability to build orb webs. Even jumping spiders, who never build webs, leap into the air with a silk safety line attached, like mountaineers roped to their most recent secure foothold. |